Termination of the given ITRSProblem could not be shown:



ITRS
  ↳ ITRStoQTRSProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(&&(>=@z(x, 0@z), >=@z(*@z(*@z(z, z), z), y)), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(x, -@z(y, 1@z), +@z(z, y))
Cond_eval(TRUE, x, y, z) → eval(-@z(x, 1@z), -@z(y, 1@z), z)
eval(x, y, z) → Cond_eval(&&(>=@z(x, 0@z), >=@z(*@z(*@z(z, z), z), y)), x, y, z)

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)


Represented integers and predefined function symbols by Terms

↳ ITRS
  ↳ ITRStoQTRSProof
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
Cond_eval1(true, x, y, z) → eval(x, minus_int(y, pos(s(0))), plus_int(z, y))
Cond_eval(true, x, y, z) → eval(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
eval(x, y, z) → Cond_eval(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

EVAL(x, y, z) → COND_EVAL1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
EVAL(x, y, z) → AND(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y))
EVAL(x, y, z) → GREATEREQ_INT(x, pos(0))
EVAL(x, y, z) → GREATEREQ_INT(mult_int(mult_int(z, z), z), y)
EVAL(x, y, z) → MULT_INT(mult_int(z, z), z)
EVAL(x, y, z) → MULT_INT(z, z)
COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
COND_EVAL1(true, x, y, z) → MINUS_INT(y, pos(s(0)))
COND_EVAL1(true, x, y, z) → PLUS_INT(z, y)
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
COND_EVAL(true, x, y, z) → MINUS_INT(x, pos(s(0)))
COND_EVAL(true, x, y, z) → MINUS_INT(y, pos(s(0)))
EVAL(x, y, z) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
MULT_INT(pos(x), pos(y)) → MULT_NAT(x, y)
MULT_INT(pos(x), neg(y)) → MULT_NAT(x, y)
MULT_INT(neg(x), pos(y)) → MULT_NAT(x, y)
MULT_INT(neg(x), neg(y)) → MULT_NAT(x, y)
MULT_NAT(s(x), s(y)) → PLUS_NAT(mult_nat(x, s(y)), s(y))
MULT_NAT(s(x), s(y)) → MULT_NAT(x, s(y))
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_INT(pos(x), pos(y)) → MINUS_NAT(x, y)
MINUS_INT(neg(x), neg(y)) → MINUS_NAT(y, x)
MINUS_INT(neg(x), pos(y)) → PLUS_NAT(x, y)
MINUS_INT(pos(x), neg(y)) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)

The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
Cond_eval1(true, x, y, z) → eval(x, minus_int(y, pos(s(0))), plus_int(z, y))
Cond_eval(true, x, y, z) → eval(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
eval(x, y, z) → Cond_eval(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(x, y, z) → COND_EVAL1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
EVAL(x, y, z) → AND(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y))
EVAL(x, y, z) → GREATEREQ_INT(x, pos(0))
EVAL(x, y, z) → GREATEREQ_INT(mult_int(mult_int(z, z), z), y)
EVAL(x, y, z) → MULT_INT(mult_int(z, z), z)
EVAL(x, y, z) → MULT_INT(z, z)
COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
COND_EVAL1(true, x, y, z) → MINUS_INT(y, pos(s(0)))
COND_EVAL1(true, x, y, z) → PLUS_INT(z, y)
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
COND_EVAL(true, x, y, z) → MINUS_INT(x, pos(s(0)))
COND_EVAL(true, x, y, z) → MINUS_INT(y, pos(s(0)))
EVAL(x, y, z) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
MULT_INT(pos(x), pos(y)) → MULT_NAT(x, y)
MULT_INT(pos(x), neg(y)) → MULT_NAT(x, y)
MULT_INT(neg(x), pos(y)) → MULT_NAT(x, y)
MULT_INT(neg(x), neg(y)) → MULT_NAT(x, y)
MULT_NAT(s(x), s(y)) → PLUS_NAT(mult_nat(x, s(y)), s(y))
MULT_NAT(s(x), s(y)) → MULT_NAT(x, s(y))
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_INT(pos(x), pos(y)) → MINUS_NAT(x, y)
MINUS_INT(neg(x), neg(y)) → MINUS_NAT(y, x)
MINUS_INT(neg(x), pos(y)) → PLUS_NAT(x, y)
MINUS_INT(pos(x), neg(y)) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)

The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
Cond_eval1(true, x, y, z) → eval(x, minus_int(y, pos(s(0))), plus_int(z, y))
Cond_eval(true, x, y, z) → eval(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
eval(x, y, z) → Cond_eval(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 22 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
Cond_eval1(true, x, y, z) → eval(x, minus_int(y, pos(s(0))), plus_int(z, y))
Cond_eval(true, x, y, z) → eval(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
eval(x, y, z) → Cond_eval(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
Cond_eval1(true, x, y, z) → eval(x, minus_int(y, pos(s(0))), plus_int(z, y))
Cond_eval(true, x, y, z) → eval(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
eval(x, y, z) → Cond_eval(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MULT_NAT(s(x), s(y)) → MULT_NAT(x, s(y))

The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
Cond_eval1(true, x, y, z) → eval(x, minus_int(y, pos(s(0))), plus_int(z, y))
Cond_eval(true, x, y, z) → eval(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
eval(x, y, z) → Cond_eval(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MULT_NAT(s(x), s(y)) → MULT_NAT(x, s(y))

R is empty.
The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MULT_NAT(s(x), s(y)) → MULT_NAT(x, s(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
Cond_eval1(true, x, y, z) → eval(x, minus_int(y, pos(s(0))), plus_int(z, y))
Cond_eval(true, x, y, z) → eval(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
eval(x, y, z) → Cond_eval(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATEREQ_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
Cond_eval1(true, x, y, z) → eval(x, minus_int(y, pos(s(0))), plus_int(z, y))
Cond_eval(true, x, y, z) → eval(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
eval(x, y, z) → Cond_eval(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATEREQ_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
EVAL(x, y, z) → COND_EVAL1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
EVAL(x, y, z) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)

The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
Cond_eval1(true, x, y, z) → eval(x, minus_int(y, pos(s(0))), plus_int(z, y))
Cond_eval(true, x, y, z) → eval(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
eval(x, y, z) → Cond_eval(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
EVAL(x, y, z) → COND_EVAL1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
EVAL(x, y, z) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
EVAL(x, y, z) → COND_EVAL1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
EVAL(x, y, z) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
Positions in right side of the pair: Pair: COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
QDP
                        ↳ RemovalProof
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z, x_removed) → EVAL(x, minus_int(y, x_removed), plus_int(z, y), x_removed)
EVAL(x, y, z, x_removed) → COND_EVAL1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z, x_removed)
EVAL(x, y, z, x_removed) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z, x_removed)
COND_EVAL(true, x, y, z, x_removed) → EVAL(minus_int(x, x_removed), minus_int(y, x_removed), z, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
Positions in right side of the pair: Pair: COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z, x_removed) → EVAL(x, minus_int(y, x_removed), plus_int(z, y), x_removed)
EVAL(x, y, z, x_removed) → COND_EVAL1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z, x_removed)
EVAL(x, y, z, x_removed) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z, x_removed)
COND_EVAL(true, x, y, z, x_removed) → EVAL(minus_int(x, x_removed), minus_int(y, x_removed), z, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL(x, y, z) → COND_EVAL1(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z) at position [0] we obtained the following new rules [LPAR04]:

EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0))
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
QDP
                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
EVAL(x, y, z) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0))
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y1)), y0, y1, neg(x0)) at position [0,1,0] we obtained the following new rules [LPAR04]:

EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
EVAL(x, y, z) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0))
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0)) at position [0,1,0] we obtained the following new rules [LPAR04]:

EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
EVAL(x, y, z) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z)
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL(x, y, z) → COND_EVAL(and(greatereq_int(x, pos(0)), greatereq_int(mult_int(mult_int(z, z), z), y)), x, y, z) at position [0] we obtained the following new rules [LPAR04]:

EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y1)), y0, y1, neg(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0))
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y1)), y0, y1, neg(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0))
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y1)), y0, y1, neg(x0)) at position [0,1,0] we obtained the following new rules [LPAR04]:

EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0))
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0)) at position [0,1,0] we obtained the following new rules [LPAR04]:

EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
QDP
                                                ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y))
COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_EVAL1(true, x, y, z) → EVAL(x, minus_int(y, pos(s(0))), plus_int(z, y)) we obtained the following new rules [LPAR04]:

COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
QDP
                                                    ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_EVAL(true, x, y, z) → EVAL(minus_int(x, pos(s(0))), minus_int(y, pos(s(0))), z) we obtained the following new rules [LPAR04]:

COND_EVAL(true, neg(0), z0, z1) → EVAL(minus_int(neg(0), pos(s(0))), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_int(pos(z0), pos(s(0))), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(minus_int(neg(s(z0)), pos(s(0))), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
QDP
                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, neg(0), z0, z1) → EVAL(minus_int(neg(0), pos(s(0))), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_int(pos(z0), pos(s(0))), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(minus_int(neg(s(z0)), pos(s(0))), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL(true, neg(0), z0, z1) → EVAL(minus_int(neg(0), pos(s(0))), minus_int(z0, pos(s(0))), z1) at position [0] we obtained the following new rules [LPAR04]:

COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(plus_nat(0, s(0))), minus_int(z0, pos(s(0))), z1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_int(pos(z0), pos(s(0))), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(minus_int(neg(s(z0)), pos(s(0))), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(plus_nat(0, s(0))), minus_int(z0, pos(s(0))), z1)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_int(pos(z0), pos(s(0))), minus_int(z1, pos(s(0))), z2) at position [0] we obtained the following new rules [LPAR04]:

COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(minus_int(neg(s(z0)), pos(s(0))), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(plus_nat(0, s(0))), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(minus_int(neg(s(z0)), pos(s(0))), minus_int(z1, pos(s(0))), z2) at position [0] we obtained the following new rules [LPAR04]:

COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(plus_nat(s(z0), s(0))), minus_int(z1, pos(s(0))), z2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
QDP
                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(plus_nat(0, s(0))), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(plus_nat(s(z0), s(0))), minus_int(z1, pos(s(0))), z2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(plus_nat(0, s(0))), minus_int(z0, pos(s(0))), z1) at position [0,0] we obtained the following new rules [LPAR04]:

COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(s(0)), minus_int(z0, pos(s(0))), z1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
QDP
                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(plus_nat(s(z0), s(0))), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(s(0)), minus_int(z0, pos(s(0))), z1)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(plus_nat(s(z0), s(0))), minus_int(z1, pos(s(0))), z2) at position [0,0] we obtained the following new rules [LPAR04]:

COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
QDP
                                                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(s(0)), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EVAL(neg(s(x0)), y1, y2) → COND_EVAL(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
The remaining pairs can at least be oriented weakly.

EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(s(0)), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(COND_EVAL(x1, x2, x3, x4)) = x1 + x4   
POL(COND_EVAL1(x1, x2, x3, x4)) = x2 + x4   
POL(EVAL(x1, x2, x3)) = x1 + x3   
POL(and(x1, x2)) = x1   
POL(false) = 0   
POL(greatereq_int(x1, x2)) = x1   
POL(minus_int(x1, x2)) = 1   
POL(minus_nat(x1, x2)) = 1   
POL(mult_int(x1, x2)) = 0   
POL(mult_nat(x1, x2)) = 0   
POL(neg(x1)) = 1   
POL(plus_int(x1, x2)) = x1   
POL(plus_nat(x1, x2)) = 0   
POL(pos(x1)) = 1   
POL(s(x1)) = 0   
POL(true) = 1   

The following usable rules [FROCOS05] were oriented:

plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(0, 0) → pos(0)
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(s(x), 0) → pos(s(x))
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
and(true, true) → true
and(true, false) → false



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
QDP
                                                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(s(0)), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
The remaining pairs can at least be oriented weakly.

EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(s(0)), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(COND_EVAL(x1, x2, x3, x4)) = x1   
POL(COND_EVAL1(x1, x2, x3, x4)) = x1   
POL(EVAL(x1, x2, x3)) = 1   
POL(and(x1, x2)) = x1   
POL(false) = 0   
POL(greatereq_int(x1, x2)) = 1   
POL(minus_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 0   
POL(mult_int(x1, x2)) = 0   
POL(mult_nat(x1, x2)) = 0   
POL(neg(x1)) = 0   
POL(plus_int(x1, x2)) = 0   
POL(plus_nat(x1, x2)) = 0   
POL(pos(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = 1   

The following usable rules [FROCOS05] were oriented:

and(false, false) → false
and(false, true) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
and(true, true) → true
and(true, false) → false



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
QDP
                                                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(s(0)), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EVAL(neg(0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
The remaining pairs can at least be oriented weakly.

EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(s(0)), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)
Used ordering: Matrix interpretation [MATRO]:

POL(EVAL(x1, x2, x3)) =
/10\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/00\
\00/
·x3

POL(neg(x1)) =
/10\
\00/
·x1 +
/0\
\0/

POL(0) =
/1\
\0/

POL(COND_EVAL1(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/10\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(and(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(true) =
/0\
\0/

POL(greatereq_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/10\
\10/
·x2

POL(mult_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(pos(x1)) =
/00\
\10/
·x1 +
/0\
\0/

POL(mult_nat(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/11\
\00/
·x2

POL(COND_EVAL(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(minus_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\1/
+
/01\
\00/
·x2

POL(s(x1)) =
/00\
\00/
·x1 +
/0\
\0/

POL(plus_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/01\
\00/
·x2

POL(minus_nat(x1, x2)) =
/00\
\00/
·x1 +
/0\
\1/
+
/00\
\00/
·x2

POL(plus_nat(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/10\
\01/
·x2

POL(false) =
/1\
\1/

The following usable rules [FROCOS05] were oriented:

plus_nat(s(x), y) → s(plus_nat(x, y))
plus_nat(0, x) → x
minus_nat(0, s(y)) → neg(s(y))
minus_nat(0, 0) → pos(0)
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(s(x), 0) → pos(s(x))
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
QDP
                                                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(s(0)), minus_int(z0, pos(s(0))), z1)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


COND_EVAL(true, neg(0), z0, z1) → EVAL(neg(s(0)), minus_int(z0, pos(s(0))), z1)
The remaining pairs can at least be oriented weakly.

EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)
Used ordering: Matrix interpretation [MATRO]:

POL(EVAL(x1, x2, x3)) =
/10\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/00\
\00/
·x3

POL(neg(x1)) =
/10\
\00/
·x1 +
/0\
\0/

POL(0) =
/1\
\0/

POL(COND_EVAL1(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/10\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(and(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(true) =
/0\
\0/

POL(greatereq_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\01/
·x2

POL(mult_int(x1, x2)) =
/01\
\00/
·x1 +
/1\
\1/
+
/00\
\00/
·x2

POL(pos(x1)) =
/00\
\10/
·x1 +
/0\
\0/

POL(mult_nat(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/10\
\00/
·x2

POL(COND_EVAL(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/10\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(minus_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\1/
+
/01\
\00/
·x2

POL(s(x1)) =
/00\
\00/
·x1 +
/0\
\0/

POL(plus_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(minus_nat(x1, x2)) =
/00\
\00/
·x1 +
/0\
\1/
+
/00\
\00/
·x2

POL(plus_nat(x1, x2)) =
/00\
\10/
·x1 +
/0\
\1/
+
/10\
\01/
·x2

POL(false) =
/1\
\1/

The following usable rules [FROCOS05] were oriented:

plus_nat(s(x), y) → s(plus_nat(x, y))
plus_nat(0, x) → x
minus_nat(0, s(y)) → neg(s(y))
minus_nat(0, 0) → pos(0)
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(s(x), 0) → pos(s(x))
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
QDP
                                                                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


COND_EVAL(true, neg(s(z0)), z1, z2) → EVAL(neg(s(plus_nat(z0, s(0)))), minus_int(z1, pos(s(0))), z2)
The remaining pairs can at least be oriented weakly.

EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
Used ordering: Matrix interpretation [MATRO]:

POL(EVAL(x1, x2, x3)) =
/01\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/00\
\00/
·x3

POL(neg(x1)) =
/11\
\10/
·x1 +
/0\
\0/

POL(0) =
/1\
\1/

POL(COND_EVAL1(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/01\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(and(x1, x2)) =
/00\
\01/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(true) =
/0\
\1/

POL(greatereq_int(x1, x2)) =
/00\
\01/
·x1 +
/0\
\0/
+
/11\
\00/
·x2

POL(mult_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(pos(x1)) =
/11\
\00/
·x1 +
/0\
\1/

POL(mult_nat(x1, x2)) =
/00\
\01/
·x1 +
/0\
\0/
+
/00\
\10/
·x2

POL(COND_EVAL(x1, x2, x3, x4)) =
/01\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(minus_int(x1, x2)) =
/10\
\00/
·x1 +
/1\
\0/
+
/10\
\10/
·x2

POL(s(x1)) =
/00\
\01/
·x1 +
/0\
\0/

POL(plus_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(minus_nat(x1, x2)) =
/01\
\00/
·x1 +
/0\
\0/
+
/01\
\01/
·x2

POL(plus_nat(x1, x2)) =
/00\
\01/
·x1 +
/0\
\1/
+
/10\
\01/
·x2

POL(false) =
/0\
\0/

The following usable rules [FROCOS05] were oriented:

plus_nat(s(x), y) → s(plus_nat(x, y))
plus_nat(0, x) → x
minus_nat(0, s(y)) → neg(s(y))
minus_nat(0, 0) → pos(0)
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(s(x), 0) → pos(s(x))
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
and(true, true) → true
and(true, false) → false



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
QDP
                                                                                                ↳ RemovalProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
EVAL(pos(x0), y1, y2) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
Positions in right side of the pair: Pair: COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
Positions in right side of the pair: Pair: COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
Positions in right side of the pair: Pair: COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
Positions in right side of the pair: Pair: COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
Positions in right side of the pair: Pair: COND_EVAL(true, z0, z1, neg(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), neg(z2))
Positions in right side of the pair: Pair: COND_EVAL(true, z0, z1, pos(z2)) → EVAL(minus_int(z0, pos(s(0))), minus_int(z1, pos(s(0))), pos(z2))
Positions in right side of the pair: Pair: COND_EVAL(true, pos(z0), z1, z2) → EVAL(minus_nat(z0, s(0)), minus_int(z1, pos(s(0))), z2)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
                                                                                              ↳ QDP
                                                                                                ↳ RemovalProof
QDP
                                                                                                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2, x_removed)
COND_EVAL1(true, z0, z1, pos(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(pos(z2), z1), x_removed)
COND_EVAL1(true, z0, z1, neg(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(neg(z2), z1), x_removed)
COND_EVAL1(true, neg(0), z0, z1, x_removed) → EVAL(neg(0), minus_int(z0, x_removed), plus_int(z1, z0), x_removed)
EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed)
COND_EVAL1(true, pos(z0), z1, z2, x_removed) → EVAL(pos(z0), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed)
COND_EVAL1(true, neg(s(z0)), z1, z2, x_removed) → EVAL(neg(s(z0)), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed)
EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed)
COND_EVAL(true, z0, z1, neg(z2), x_removed) → EVAL(minus_int(z0, x_removed), minus_int(z1, x_removed), neg(z2), x_removed)
COND_EVAL(true, z0, z1, pos(z2), x_removed) → EVAL(minus_int(z0, x_removed), minus_int(z1, x_removed), pos(z2), x_removed)
COND_EVAL(true, pos(z0), z1, z2, x_removed) → EVAL(minus_nat(z0, s(0)), minus_int(z1, x_removed), z2, x_removed)
EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed)
EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair EVAL(neg(0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2, x_removed) the following chains were created:




For Pair COND_EVAL1(true, z0, z1, pos(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(pos(z2), z1), x_removed) the following chains were created:




For Pair COND_EVAL1(true, z0, z1, neg(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(neg(z2), z1), x_removed) the following chains were created:




For Pair COND_EVAL1(true, neg(0), z0, z1, x_removed) → EVAL(neg(0), minus_int(z0, x_removed), plus_int(z1, z0), x_removed) the following chains were created:




For Pair EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed) the following chains were created:




For Pair COND_EVAL1(true, pos(z0), z1, z2, x_removed) → EVAL(pos(z0), minus_int(z1, x_removed), plus_int(z2, z1), x_removed) the following chains were created:




For Pair EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed) the following chains were created:




For Pair COND_EVAL1(true, neg(s(z0)), z1, z2, x_removed) → EVAL(neg(s(z0)), minus_int(z1, x_removed), plus_int(z2, z1), x_removed) the following chains were created:




For Pair EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed) the following chains were created:




For Pair EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed) the following chains were created:




For Pair COND_EVAL(true, z0, z1, neg(z2), x_removed) → EVAL(minus_int(z0, x_removed), minus_int(z1, x_removed), neg(z2), x_removed) the following chains were created:




For Pair COND_EVAL(true, z0, z1, pos(z2), x_removed) → EVAL(minus_int(z0, x_removed), minus_int(z1, x_removed), pos(z2), x_removed) the following chains were created:




For Pair COND_EVAL(true, pos(z0), z1, z2, x_removed) → EVAL(minus_nat(z0, s(0)), minus_int(z1, x_removed), z2, x_removed) the following chains were created:




For Pair EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed) the following chains were created:




For Pair EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:

POL(0) = 0   
POL(COND_EVAL(x1, x2, x3, x4, x5)) = -1 - x1 - x2 - x3 - x4 - x5   
POL(COND_EVAL1(x1, x2, x3, x4, x5)) = -1 - x1 - x2 + x3 - x4 - x5   
POL(EVAL(x1, x2, x3, x4)) = -1 - x1 + x2 - x3 - x4   
POL(and(x1, x2)) = 0   
POL(c) = -1   
POL(false) = 1   
POL(greatereq_int(x1, x2)) = 0   
POL(minus_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 0   
POL(mult_int(x1, x2)) = 0   
POL(mult_nat(x1, x2)) = 0   
POL(neg(x1)) = 0   
POL(plus_int(x1, x2)) = x1   
POL(plus_nat(x1, x2)) = x2   
POL(pos(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = 0   

The following pairs are in P>:

COND_EVAL1(true, neg(s(z0)), z1, z2, x_removed) → EVAL(neg(s(z0)), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
The following pairs are in Pbound:

COND_EVAL1(true, neg(s(z0)), z1, z2, x_removed) → EVAL(neg(s(z0)), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
The following rules are usable:

pos(plus_nat(x, y)) → plus_int(pos(x), pos(y))
neg(plus_nat(x, y)) → plus_int(neg(x), neg(y))
minus_nat(0, s(y)) ↔ neg(s(y))
minus_nat(0, 0) ↔ pos(0)
minus_nat(s(x), s(y)) ↔ minus_nat(x, y)
minus_nat(s(x), 0) ↔ pos(s(x))
minus_int(neg(x), pos(y)) ↔ neg(plus_nat(x, y))
minus_int(pos(x), pos(y)) ↔ minus_nat(x, y)
minus_nat(y, x) → plus_int(neg(x), pos(y))
minus_nat(x, y) → plus_int(pos(x), neg(y))
falseand(false, false)
falseand(false, true)
trueand(true, true)
falseand(true, false)


↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
                                                                                              ↳ QDP
                                                                                                ↳ RemovalProof
                                                                                                  ↳ QDP
                                                                                                    ↳ NonInfProof
QDP
                                                                                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2, x_removed)
COND_EVAL1(true, z0, z1, pos(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(pos(z2), z1), x_removed)
COND_EVAL1(true, z0, z1, neg(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(neg(z2), z1), x_removed)
COND_EVAL1(true, neg(0), z0, z1, x_removed) → EVAL(neg(0), minus_int(z0, x_removed), plus_int(z1, z0), x_removed)
EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed)
COND_EVAL1(true, pos(z0), z1, z2, x_removed) → EVAL(pos(z0), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed)
EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed)
EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed)
COND_EVAL(true, z0, z1, neg(z2), x_removed) → EVAL(minus_int(z0, x_removed), minus_int(z1, x_removed), neg(z2), x_removed)
COND_EVAL(true, z0, z1, pos(z2), x_removed) → EVAL(minus_int(z0, x_removed), minus_int(z1, x_removed), pos(z2), x_removed)
COND_EVAL(true, pos(z0), z1, z2, x_removed) → EVAL(minus_nat(z0, s(0)), minus_int(z1, x_removed), z2, x_removed)
EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed)
EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL(neg(0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2, x_removed) at position [0] we obtained the following new rules [LPAR04]:

EVAL(neg(0), y0, pos(x0), y2) → COND_EVAL1(and(true, greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y0)), neg(0), y0, pos(x0), y2)
EVAL(neg(0), y0, neg(x0), y2) → COND_EVAL1(and(true, greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y0)), neg(0), y0, neg(x0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
                                                                                              ↳ QDP
                                                                                                ↳ RemovalProof
                                                                                                  ↳ QDP
                                                                                                    ↳ NonInfProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, z0, z1, pos(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(pos(z2), z1), x_removed)
COND_EVAL1(true, z0, z1, neg(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(neg(z2), z1), x_removed)
COND_EVAL1(true, neg(0), z0, z1, x_removed) → EVAL(neg(0), minus_int(z0, x_removed), plus_int(z1, z0), x_removed)
EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed)
COND_EVAL1(true, pos(z0), z1, z2, x_removed) → EVAL(pos(z0), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed)
EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed)
EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed)
COND_EVAL(true, z0, z1, neg(z2), x_removed) → EVAL(minus_int(z0, x_removed), minus_int(z1, x_removed), neg(z2), x_removed)
COND_EVAL(true, z0, z1, pos(z2), x_removed) → EVAL(minus_int(z0, x_removed), minus_int(z1, x_removed), pos(z2), x_removed)
COND_EVAL(true, pos(z0), z1, z2, x_removed) → EVAL(minus_nat(z0, s(0)), minus_int(z1, x_removed), z2, x_removed)
EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed)
EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed)
EVAL(neg(0), y0, pos(x0), y2) → COND_EVAL1(and(true, greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y0)), neg(0), y0, pos(x0), y2)
EVAL(neg(0), y0, neg(x0), y2) → COND_EVAL1(and(true, greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y0)), neg(0), y0, neg(x0), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))

We have to consider all minimal (P,Q,R)-chains.